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Critical Dynamic Viscosities in a Binary Mixture 1 

Y. Izumi ,  2 H. Sawano, 2'3 H. Sato,  2'4 Y. Miyake ,  2 
R. Kono, 5 and H. Yoshizaki  5 

Ultrasonic shear measurements were conducted on polystyrene-cyclohexane 
solutions at 3, 51, and 252 kHz using the crystal fork and torsion methods. The 
real and imaginary parts of the complex shear modulus above the critical point 
are compared with modified theoretical expressions derived within the 
framework of the decoupled-mode theory. For this comparison, a background 
part was assumed to be described by a scaling form proposed by de Gennes. 
Numerical analysis of the data shows a satisfactory agreement between the 
theory and the experiments for ultrasonic shear data over a wide range of 
reduced frequency co*. In addition, it is shown that the description of the simple 
viscosity dynamical scaling function is broken at a high-frequency limit. 

KEY WORDS: critical phenomena; cyclohexane; polystyrene; shear modulus; 
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1. I N T R O D U C T I O N  

In a previous paper  [1 ], ul t rasonic shear data  along the critical isochore 
in xenon and  in the b inary  mixture n i t robenzene-n-hexane  were interpreted 

in terms of modified theoretical expressions derived within the framework 
of decoupled-mode theory. Al though the numerical  analysis of the data  has 
shown a rather  satisfactory agreement between the theory and  the 
experiments for ul t rasonic shear data, we did not  claim that these tests are 

i Paper presented at the Tenth Symposium on Thermophysical Properties, June 20-23, 1988, 
Gaithersburg, Maryland, U.S.A. 

2 Department of Polymer Science, Hokkaido University, Sapporo 060, Japan. 
3 Present address: The Fujikura Cable Works Ltd., Sakura, Chiba 285, Japan. 
4 Present address: Ibaraki Electrical Communication Laboratory, Nippon Telegraph and 

Telephone Public Corporation, Tokai, Ibaraki 319-11, Japan. 
5 Department of Applied Physics, National Defense Academy, Yokosuka 239, Japan. 

379 

0195-928X/89/0300-0379506.00/0 �9 i989 Plenum Publishing Corporation 



380 Izumi, Sawano, Sato, Miyake, Kono, and Yoshizaki 

conclusive because of the scattering of our experimental data. Furthermore, 
we desired to improve the ultrasonic shear measurements and investigate 
the viscosity over a wide range of frequency in various binary systems in 
order to obtain more conclusive results. To improve the measurements we 
used a network analyzer system described later. By choosing a polymer 
solution as the binary mixture, we were able to test the theory over a wide 
range of reduced frequency co*, because the polymer solution is charac- 
terized by a high viscosity and a large correlation length in comparison 
with simple pure fluids and binary mixtures of low molecular weight. 

In this paper, we report measurements on the ultrasonic shear 
viscosity for polystyrene in cyclohexane at the critical solution concentra- 
tion in the one-phase region as a function of temperature and frequency. 
This system has been thoroughly examined over the past decade by 
coexistence-curve measurements [-2], light-scattering measurements [-2, 3], 
static shear viscosity measurements [4], and line-width measurements [5]. 
These data enabled us to test the theory of the dynamic viscosity over 
a wide range of co*. Experiments were conducted with a carefully 
fractionated polymer sample to minimize the effect of the molecular weight 
distribution. 

2. E X P E R I M E N T A L  

The fork and torsion crystal techniques described in previous papers 
[6-8 ] were used for dynamic viscosity measurements. The vibration of the 
crystal is damped by immersing it in a liquid to be measured, and the 
properties of liquid in shear may be calculated from the resulting changes 
in the resonant frequency Af and in the resistance Ar corresponding to 
the resonant frequency on the motional admittance circle of the crystal, 
compared with the corresponding values in air. These quantities are 
related to the real and imaginary parts (R and X, respectively) of the shear 
mechanical impedance Z by the equations 

Z = R + i X  (1) 

R = Ar/2 x/-2K (2) 

X= AU/x//-2K (3) 

where K is a constant for a particular crystal and is determined from 
Newtonian liquids through the equation, 

K= Af/ px/f~N~NCO (4) 

where PN and t/N are the density and the viscosity in Newtonian liquids, 
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respectively, and co is the ultrasonic shear wave frequency. The crystal was 
connected electrically with a network analyzer [Hewlett Packard (HP) 
3570A] through a VHF switch (HP 59307A). The network analyzer was 
used to measure the electrical impedance of the torsional crystal. For a 
frequency source a synthesizer (HP 3330B) was used. This HP 3042A 
network analyzer system is connected by the HP-IB interface bus and 
controlled by a computer (HP 9825A). The output is printed out and also 
made on a plotter (HP 9862A). The block diagram of this system is shown 
in Fig. 1. 

Polystyrene (Mw = 11x 10 4 and Mw/Mn< 1.02, with M w and M n 
being the weight- and the number-average molecular weight, respectively) 
in cyclohexane was used in the present work. The sample preparation and 
critical mixing point (To= 21.455~ ~bc = 0.0825 by volume fraction) have 
been fully described elsewhere [4]. 

The cystals of 3, 51, and 252 kHz were separately suspended in three 
2-cm-diameter, 10-cm-long glass cells, which were sealed with mercury to 
avoid concentration changes. The change in concentration by evaporation 
during the course of the experiment was less than 0.006 % in weight of 
cyclohexane. Each mixture was well stirred before and after it was poured 
into the ultrasonic cell, and rest periods of more than 30 min were allowed 
to ensure the establishment of equilibrium in the system before the 
measurements were made at each temperature. Above the critical tem- 
perature, it was found that there was no difference between stirring and not 
stirring the solution. This means that gravitational effects are probably not 
important. The ultrasonic cell was placed in a water Dewer vessel along 
with a thermostat which provided a constant temperature within 0.002 K. 
The temperature was measured by a quartz thermometer (HP 2801A). The 
values of static viscosity and density have been reported elsewhere [4]. 

Crystals 

1252kHzJ'---l'HP 59307 A 

I 51 kHz ~ -~  VHF Switch 
I 3kHz l - - I  

HP 3330B 

Network ~k_.-..J 
Analyzer I ' 

HP 9825 A 

Cont r oller 

HP 9862 A 
Plot ter  

Fig. 1. Block diagram of the measuring system (HP 3042A network analyzer system). 
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3. DATA ANALYSIS 

The complex viscosity ~/* is separated into real and imaginary parts as 
follows: 

t/* = t / ' -  it/" 

= (tfB + At f )  -- i(tl' ~ + Atf ' )  (5) 

The real and imaginary parts of the complex viscosity q* are written by 
using the real and imaginary parts of the shear mechanical impedance as 
follows: 

tf  = 2XR/cop and tl" = (R 2 - X 2 ) / ~ p  (6) 

where p is the density of critical solution. 
The critical component Atl* ( - A t f - i A q " )  is expressed in terms of the 

following theoretical expressions derived within the framework of the 
decoupled-mode theory [1, 10]: 

8 8 qc/~ dr .  v 8 
At/'(c~ w) = 1-~n2 iT(tel S'  = 1--~2 f/(~) ~ ~o ( l + v 2 ) 3 / Z [ v 4 ( l + v 2 ) + c o * 2 ]  ' 

(7) 

8 8 qc/tr dr.  l)6(D * 

(8) 

respectively, where v = q/x, q is a wave vector, ~c is the reciprocal correla- 
tion length, the reduced frequency ~o* = ~O/O~D, the characteristic frequency 
~OD = kB T~r and the cutoff wave number qo is a free parameter to be 
fixed by fitting the shear viscosity data to Eq. (9). In the limit of ~o ~ 0, 
Eq. (7)is  

8 
~(K)  = ~ 0(~) s3 

8 ( qc/~c (qJ~c) 3 
= 1592 t~(tc) ~ (q~/~C + 1) 1/2- 3(q2/~c 2 + 1) 3/2 

In [qc/~C) + (q~/x 2 + 1)1/2[ ) (9) + 

The above-mentioned theory predicts only the critical part of the complex 
viscosity. 
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Next we evaluate the background component t/* ( - t ] ~ -  it/~). In fluids 
and binary mixtures, t/* does not depend on co in the range of ultrasonic 
shear wave frequence, while r/~ in a polymer solution depends on a) 
drastically. This fact has complicated the data analysis of t/* in a polymer 
solution, as pointed out previously [17]. In the present paper, r/~ and t/~ 
were evaluated by assuming the scaling forms proposed by de Gennes 
[11 ], because of the reasons described in the following section: 

(,i~ - ~ s ) / ( ,B  - n+) = c i ( ~ 0 + ) - 4  [1 + . . . ]  

~ / ( , 7 ~  - ,?+) = c';(co+) 4 [1 + . . . ]  
( l o )  

Here Cl, . . . .  c2, Cl, and c2" are empirical constants determined by the data 
outside the region in which a simple power law is realized [4], t/B was 
previously estimated by the Vogel equation [4], tl~ is the solvent viscosity, 
and ~ is the relaxation time of a single chain which is estimated by the 
Rouse model and given by 

r - 6M(t/B - ~s)/n2cRT (11) 

where c is the concentration (g/cm 3) [12, 13]. 
In the static limit, 

lira r/~ = t/B and lim r/~ = 0 (12) 
c o ~ 0  c o ~ 0  

Only the data at 51 and 252 kHz have been analyzed, because the 
accuracy of the data at 3 kHz is slightly less than that at other frequencies. 
The parameters which are required in a comparison of the data with the 
theory are the reciprocal correlation length ~ and the decay rate Fq 
obtained by light scattering [3] and Rayleigh line-width measurements 
[5]. Noting that the theory in the current state cannot discriminate among 
q, F/, and t/B [t4, 15J, we regard ~/ as ~/B in the present analysis using 
Eqs. (7)-(9). In a more rigorous test of the theory, however, it is necessary 
to deduce f/from line-width data, and then a more refined decoupled-mode 
equation should be compared with the results of viscosity measurements. 
The reciprocal correlation length ~c and the cutoff parameter qr are 
1.72x 107 ~;~ [3] and (2.17_+0.04)x 106cm -1 [16], respectively, 
where ~ is the reduced temperature difference. 

4. RESULTS AND DISCUSSION 

The results for the critical mixture are presented in Fig. 2. The solid 
line shows the Vogel equation, from which the static viscosity t l deviates at 
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Fig. 2. Real part (a) and imaginary part (b) of the complex viscosity of 
polystyrene--cyclohexane as a function of the reduced temperature difference 
~= (T-Tc) /To.  The solid line shows the background viscosity estimated 
from the Vogel equation. 

about e = 1.5 • 10 _2 [4]. It is clearly seen that ~/shows a divergence, while 
t/' and it" at 51 and 252 kHz show only slight divergences. The dynamic 
viscosity t/' is less than the static shear viscosity r/even in the range of the 
temperature outside the critical region. These behaviors of ~/' and ~/" are 
almost explained by the viscoelastic properties of polymer solutions in the 
normal state. We have examined the following two models for t/~ as a first 
step: the Rouse formula and the Doi formula [17]. It has been shown that 
the experimental data are expressed by the Rouse model rather than the 
Doi model. Further detailed examination based on the Rouse theory, 
however, showed that an essential refinement was able to be required in 
this theory for the quantitative agreement with the experiment. Any quan- 
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titative method for the refinement has not been presented as yet, although 
other evaluations of r/* have also been tried. As a result, the data points 
were analyzed by the scaling form described in Section 3. Noting that the 
present values of mr are in the vicinity of a)z = 1 [17], Eq. (10) cannot be 
applyed in the original form. However, it was assumed that the scaling 
form of Eq. (10) was preserved, as long as the constants are regarded as 
the empirical constants: c'1, c~, c[, and c2' are 0.67, 0.45, 0.31, and 0.76 in 
the range of 0.86 < coz < 1.22 for 51 kHz and 0.38, 0.14, 1.04, and 0.96 in 
the range of 4.42 < coz < 6.03 for 252 kHz, respectively. Higher terms in 
Eq. (10) were introduced to take into account deviations from the main 
term, although the terms were not used in the present analysis. 

The critical excess viscosities are thus determined and plotted against 
e in Fig. 3, where the size of the error bars was determined by taking into 
account the standard deviation occurred in the curve fitting of the 
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Fig. 3. Real part (a) and imaginary part (b) of the excess complex 
viscosity of polystyrene-cyclohexane as a function of the reduced tem- 
perature difference e. (a )The  solid lines show Eqs. (7) and (9), and 
(b) the solid line shows Eq. (8) corresponding to 5t kHz, respectively. 
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parameters of the Vogel equation and those in Eq. (10) [18]. The values 
of excess viscosities zJr/' and At/" at 252 kHz are very small. From Fig. 3, 
it can be easily understood that the dynamical viscosity in the polymer 
solution shows a significant frequency dependence at ultrasonic frequencies: 
xlr/' and At/" are almost zero. It is further noted that the behaviors of AN, 
At/', and Aq" are approximately expressed by Eqs. (7)-(9), as shown by the 
solid lines in Fig. 3. 

To study the frequency dependence of the viscosity function, a nor- 
malized dynamical scaling function apv(co*) has been introduced by 
subtraction of Eq. (7) from Eq. (9) for the static limit co = 0: 

~ t ( ~ )  - ~ ' ( c o ,  ~) ~(~) - ~'(~o, ~) 8 
0(K) - F/(x) = 15z~ 2 apv(co*) (13) 

In taking the difference within the integral sign, we previously obtained an 
integral which converged at the upper limit [ 1 ]: that is, the upper limit can 
be set equal to infinity, qc/x '-* oo. We call apv(co*) the simple dynamical 
scaling function. However, because the upper limit in the integral cannot be 
regarded as infinity in the present experiment, the behavior at high frequen- 
cies is not expressed by the simple scaling function but by a more complex 
function, 

~Pv(qc/~c,co*) fqc/,~ dv.v4co .2 (14) 
=~o  (1 4-V2) 5/2 Iv4(1 +V2)4-co . 2 ]  
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Fig. 4. Viscosity dynamic function ~pF(qc/K, (D*) as a function of reduced frequence 
co*. Ultrasonic shear data are shown at 38.7 kHz (Xe; open triangles), 51 kHz (filled 
inverted triangles), and 252 kHz (open circles) in polystyrene-cyclohexane. The dot- 
dashed, solid, and dashed curves represent Eq. (14) corresponding to 3, 51, and 
252 kHz, respectively. 
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The normalized dynamical function ~pv(qc/tr CO*) is plotted against the 
reduced frequency CO* in Fig. 4. The most interesting result is that the 
normalized dynamical function behaves quite similarly in one- and two- 
component systems except at high frequencies and that the dynamical data 
generally follow the prediction of the theory over a wide range of co*. 

Thus the Perl Ferrell theory may be successfully applied to explain the 
behavior of the dynamic viscosity. However, we do not claim that these 
tests are conclusive because of the introduction of the empirical constants. 
It is necessary to improve the method for the evaluation of q] in order to 
obtain more conclusive results. Research is in progress along this line. 
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